loader image
Skip to main content

Course credit  3

Hours per week 5

Total : 75Marks  [ Internal 15 + External 60 ]

Aim of the Course: 

·       This course  comprises the study of vector valued function and complex numbers.

·       The concept of the gradient of a scalar function , curl, and divergence of a vector field are discussed .

·       The study of  analytic functions and their behavior with respect to the complex calculus is the main focus

·      To understand the difference between the differentiability and analyticity of a complex function and the necessary and sufficient conditions  for analyticity.

      Objectives of the Course:

      To learn the idea of limit ,continuity and derivatives of vector -valued function.

      Use  partial derivatives to find the tangent plane and normal line to a point on a surface.

      Understand  the properties and applications of the gradient of a function .

      Apply double integral and triple integral to find the mass of a lamina, center of mass, etc.

      Evaluate curl and divergence of a vector field.

      Understand  the definition and evaluation of complex integral.

      Understand Cauchy ‘s integral formula and apply it to derivative Liouville’s theorem and the fundamental theorem of Algebra.

      Understand the line integral, surface integral and triple integral.

Module I                                                                                                                        (21 hrs)

          : Vector Functions - Vector Valued Functions, Limits, Continuity, and Derivatives, Geometric Interpretation of r(t), Higher Order Derivatives, Integrals of Vector                                Functions, Length of a Space Curve, Arc Length as a Parameter

          : Motion on a Curve - Velocity and Acceleration, Centripetal Acceleration, Curvilinear Motion in the Plane

          : Curvature and components of Acceleration  - definition, Curvature of a Circle, Tangential and Normal Components of Acceleration, The Binormal, Radius of Curvature

          : Partial Derivatives - Functions of Two Variables, Level Curves, Level Surfaces, Higher Order and Mixed Derivatives, Functions of Three or More Variables, Chain Rule, Generalizations

          : Directional Derivative - The Gradient of a Function, A Generalization of Partial Differentia- tion, Method for Computing the Directional Derivative, Functions of Three Variables, Maximum Value of the Directional Derivative, Gradient Points in Direction of Most Rapid Increase of f

          : Tangent planes and Normal Lines - Geometric Interpretation of the Gradient, Tangent Plane, Surfaces Given by z = f (x, y), Normal Line

Module II                                                                                                                        (24 hrs

             : Curl and Divergence - Vector Fields, definition of curl and divergence, Physical Interpreta- tions

          : Line Integrals - definition of smooth closed and simple closed curves, Line Integrals in the Plane, Method of Evaluation - curve as explicit function and curve given parametrically, Line Integrals in Space, Method of Evaluation, Work, Circulation

          : Independence of Path - Conservative Vector Fields, Path Independence, A Fundamental The- orem, definition of connected, simply connected and multiconnected regions, Integrals Around Closed Paths, Test for a Conservative Field, Conservative Vector Fields in 3-Space, Conservation of Energy

           : Double Integral - Integrability, Area, Volume, Properties, Regions of Type I and II, Iterated Integrals, Evaluation of Double Integrals (Fubini theorem), Reversing the Order of Integration, Laminas with Variable Density-Center of Mass, Moments of Inertia, Radius of Gyration

                        : Double Integrals in  Polar  Coordinates - Polar Rectangles, Change of Variables:  Rectan- gular to Polar Coordinates.

              : Green’s Theorem - Line Integrals Along Simple Closed Curves,  Green’s  theorem  in  plane, Region with Holes

            : Surface Integral - Surface Area, Differential of Surface Area, Surface Integral, Method of Evaluation, Projection of S into Other Planes, Mass of a Surface, Orientable Surfaces, Integrals of Vector Fields-Flux.

          : Stokes’s Theorem - Vector Form of Green’s Theorem, Green’s Theorem in 3-Space Stoke’s Theorem, Physical Interpretation of Curl

 

Module III                                                                                                                        (21 hrs)

                    : Triple Integral - definition, Evaluation by Iterated Integrals, Applications, Cylindrical Co- ordinates, Conversion of Cylindrical Coordinates to Rectangular Coordinates,               Conversion of Rectangular Coordinates to Cylindrical Coordinates, Triple Integrals in Cylindrical Coordinates, Spherical Coordinates, Conversion of Spherical                               Coordinates to Rectangular and Cylindrical Co- ordinates, Conversion of Rectangular Coordinates to Spherical Coordinates, Triple Integrals in Spherical Coordinates

            : Divergence Theorem - Another Vector Form of Green’s Theorem, divergence or Gauss’ the- orem, (proof omitted), Physical Interpretation of Divergence

             : Change of Variable in Multiple Integral - Double Integrals, Triple Integrals

   17.1: Complex Numbers - definition, arithmetic operations, conjugate, Geometric Interpretation 17.2: Powers and roots - Polar Form, Multiplication and Division, Integer Powers of z, DeMoivre’s

Formula, Roots

            : Sets in the Complex Plane - neighbourhood, open sets, domain, region etc.

            Functions  of  a  Complex  Variable - complex functions,  Complex Functions as Flows,  Limits and Continuity, Derivative, Analytic Functions-entire functions

  : Cauchy Riemann Equation - A Necessary Condition for Analyticity, Criteria for analyticity, Harmonic Functions, Harmonic Conjugate Functions,

  : Exponential and Logarithmic function - (Complex) Exponential Function, Properties, Pe- riodicity, (‘Circuits’ omitted), Complex Logarithm-principal value, properties, Analyticity

  : Trigonometric and Hyperbolic functions - Trigonometric Functions, Hyperbolic Functions, Properties-Analyticity, periodicity, zeros etc.

 

Module IV                                                                                                                        (14 hrs)

       :  Contour  integral-definition,  Method  of  Evaluation,  Properties,  ML   inequality, Circulation and Net

  :  Cauchy-Goursat  Theorem-  Simply  and  Multiply  Connected   Domains,   Cauchy’s Theorem, Cauchy-Goursat theorem, Cauchy-Goursat Theorem for Multiply Connected Do- mains.

  : Independence of Path - Analyticity and path independence, fundamental theorem for contour integral, Existence of Antiderivative

  : Cauchy’s Integral Formula - First Formula, Second Formula-C.I.F. for derivatives. Liou- ville’s Theorem, Fundamental Theorem of Algebra

 

References:

1.                     1.  Soo T Tan: Calculus Brooks/Cole, Cengage Learning(2010 )ISBN 0-534-46579-X

              2. Gilbert Strang: Calculus Wellesley Cambridge Press(1991)ISBN: 0-9614088-2-0

             3.   Ron Larson. Bruce Edwards:  Calculus(11/e) Cengage Learning(2018) ISBN: 978-1-337-27534-7

             4.  Robert A Adams & Christopher Essex : Calculus several Variable (7/e) Pearson Education Canada (2010) ISBN: 978-0-321-54929-7

5.    Jerrold Marsden & Anthony Tromba : Vector Calculus (6/e)  W.  H.  Freeman  and  Company ISBN: 978-1-4292-1508-4

6.    Peter V O’Neil: Advanced Engineering Mathematics(7/e) Cengage Learning(2012)ISBN: 978- 1-111-42741-2

7.    Erwin Kreyszig: Advanced Engineering Mathematics(10/e) John Wiley & Sons(2011) ISBN: 978-0-470-45836-5

8.    Glyn James: Advanced Modern Engineering Mathematics(4/e) Pearson Education Limited(2011) ISBN: 978-0-273-71923-6

Text:  Advanced Engineering  Mathematics (6/e) : Dennis G Zill Jones & Bartlett Learning, LLC (2018)ISBN: 978-1-284-10590-2

Skill Level: Beginner